Algebra Preliminary Examination June, 2015

Do all of the following questions.

Question 1. Prove Schur's Lemma. Let G be a finite group with V and W irreducible complex G-representations.

- 1. If V and W are not isomorphic, then $\operatorname{Hom}_G(V, W) = 0$.
- 2. If V and W are isomorphic, then $\operatorname{Hom}_G(V, W) \cong \mathbb{C}$.

Question 2. Consider the alternating group A_4 of even symmetries of the set $\{a, b, c, d\}$. The group A_4 has 4 conjugacy classes. These are represented by the unit 1, an order 2 element (ab)(cd), the order 3 element (abc), and the order 3 element (acb). Calculate the character table of A_4 . Construct the irreducible representations of A_4 . Prove your answers are correct.

Question 3. Consider $\mathsf{GL}_n(\mathbb{F}_q)$ the general linear group of $n \times n$ invertible matrices over the field with $q = p^r$ elements, and let $B_n \subset \mathsf{GL}_n(\mathbb{F}_q)$ be the subgroup of upper triangular matrices which have 1's on the diagonal.

- 1. Derive a formula for the number of elements of $\mathsf{GL}_n(\mathbb{F}_q)$.
- 2. Prove that $B_n \subset \mathsf{GL}_n(\mathbb{F}_q)$ is a Sylow *p*-subgroup.

Question 4. Consider the polynomial

$$f(x) = x^5 - 8x + 2$$
.

Prove that f(x) is irreducible over \mathbb{Q} . Prove that the Galois group of f(x) is Σ_5 .

Question 5. Let *A* be a commutative ring with

$$M \xrightarrow{\phi} M$$

an A-linear endomorphism of finitely generated A-module M. Prove that if ϕ is surjective, then it is also injective. (Hint: recall Nakayama's Lemma, and note that ϕ gives M the structure of an module over the polynomial ring A[x].)

Question 6. Consider the commutative ring

$$A := \mathbb{C}[s,t]/(t^3 - s^2) .$$

- 1. Prove that A is an integral domain.
- 2. Calculate the integral closure of A, and prove that your answer is correct.
- 3. Classify the maximal ideals of A according to the ranks of their cotangent spaces.